
Gillcup Graphics Documentation
Release 0.2.0-alpha.1

Petr Viktorin

2017-03-27

Contents

1 Installation and Dependencies 3

2 Tutorial 5
2.1 Hello, World! . 5
2.2 The Clock . 7
2.3 Animations . 9
2.4 Input . 13

3 Module Reference 17
3.1 gillcup_graphics.objects . 17
3.2 gillcup_graphics.mainwindow . 22
3.3 gillcup_graphics.transformation . 22
3.4 gillcup_graphics.effectlayer . 24

4 Indices and tables 25

Python Module Index 27

i

ii

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

Gillcup Graphics is a Pyglet-based graphics library that allows you to craft scenes out of trees of objects such as layers
and sprites. It uses Gillcup animated properties to allow dynamic changes to scene trees, allowing complex animations
or games.

Contents 1

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

2 Contents

CHAPTER 1

Installation and Dependencies

The short story: pip install gillcup_graphics

You need to have Python and OpenGL on your computer to run Gillcup Graphics.

Besides that, Gillcup Graphics depends on two Python libraries: Gillcup and Pyglet. These are pulled in automatically
when you install via pip or a similar tool.

If you have no clue what that meant, please go read its instructions, and substitute gillcup_graphics for the
package you would like to install.

If you have an aversion to pip for some reason, use any other tool that can install from PyPI.

3

http://gillcup.readthedocs.org
http://www.pyglet.org/
http://www.pip-installer.org/en/latest/index.html
http://www.pip-installer.org/en/latest/installing.html

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

4 Chapter 1. Installation and Dependencies

CHAPTER 2

Tutorial

Read this to get started quickly.

The tutorial will assume that you know your Python, and have some idea about how computer graphics work – if you
aren’t familiar with coordinate systems, you should read a different text.

Gillcup Graphics tries to not hide anything from you, but to make your work easier by providing a higher-level graphics
layer atop Pyglet. To do non-trivial things (such as advanced transformations, fast batches, shaders, video), or things
that are out of scope for a this library (e.g. sound), you should learn something about the underlying concepts. Gillcup
Graphics mixes with Pyglet or “raw” OpenGL calls easily.

Hello, World!

Note: This is not an introduction page for dummies.

Despite the name, this page covers lots of info. It also introduces some problems that you (the programmer, not the
library), will be expected to solve in your applications, and gives an example of how to solve them. In exchange for
what looks like boilerplate code now, you get the freedom to later solve the problems in other ways. Ways which
which are more appropriate in your case. Ways which, hopefully, let you do more than the library’s author imagined.

You’ll have to understand what you’re doing, and have an idea of what the library is doing for you. If that rubs you
the wrong way, you should pick a different library.

To greet the planet, type this into your favorite editor ad run it:

from gillcup_graphics import Layer, Text, Window, run

root_layer = Layer()

hi_world = Text(root_layer, 'Hello, World!',
position=(0.5, 0.5),
relative_anchor=(0.5, 0),
scale=(0.001, 0.001),

5

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

)

Window(root_layer, width=400, height=400)

run()

It’s quite a lot to take in at once, so let’s go through it one line at a time.

Obviously, you will need to import some objects first. For our first example we’ll only need four:

from gillcup_graphics import Layer, Text, Window, run

Once that’s done, we’ll create a Layer:

root_layer = Layer()

You probably know about the kind of layers you can find in modern painting applications: potentially semi-transparent
“sheets” stacked atop one another, with layers further down showing wherever the higher layers are transparent.

Our kind of layers is a somewhat different take on that sheets idea. They are not just stacked, but arranged in trees:
each layer can have one or more children, either other layers or different objects. When you move, rotate, or resize a
layer, all its children are moved, rotated or resized with it. Layers themselves are completely transparent; the actual
drawing is done by the leaves of the scene tree.

The layer at the root of a scene tree – here, root_layer – is typically the only graphics object that doesn’t have a
parent. For the others, we specify a parent as the first argument when creating them:

hi_world = Text(root_layer, 'Hello, World!',

Here, we’re creating a Text object in our root_layer. We’re also passing a certain well-loved string for the Text
object to draw. (Note that the assignment is actually unnecessary. The text gets attached to the layer just by having a
parent specified; a reference doesn’t need to be kept around.)

Unfortunately, just that won’t do. We also need to specify where we want the text to be drawn. Let’s put it in the
middle:

position=(0.5, 0.5),

This brings us to the concept of coordinates and sizing. Since we did not specify a size for root_layer, it has a
default size of 1×1 unit. Later, when we display it, it will be stretched (scaled) to cover the entire window (in our case,
400×400 pixels). However, regardless of the scaling, the children of the layer deal with a unit square, and (0.5, 0.5) is
right in the middle of that.

There’s one more problem: as customary in OpenGL (and Pyglet (and math)), the origin of the coordinate system
is in the lower-left corner. The position argument moves the origin to the specified point. So if we just set the
position to (0.5, 0.5), our text wouldn’t be centered at all!

The solution to this problem is to set the anchor property. The anchor specifies the origin of the coordinate system,
in whatever units the object itself uses. Just what we need? Well, almost. The catch is in the units. Unlike Layers,
a Text’s size is not 1×1 units, instead, it’s the pixel size of the underlying glyph textures. In our case, it should be
something in the ballpark of 600×100, although can’t say for sure, because I don’t know what font Pyglet uses on your
system by default. So, to really center the object, we’d either need to say something like anchor = (300, 50),
and ignore the inaccuracy, or create the object, get its size, and set the anchor to half or that.

There’s a more elegant approach:

relative_anchor=(0.5, 0),

6 Chapter 2. Tutorial

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

relative_anchor maps the given coordinates from an unit square to the object’s size and sets anchor to the
result. So, with (0.5, 0), anchor will always be in the bottom center of the object (even if the text is later resized).
This is done with a bit of magic that will be dispelled later: with Gillcup, it’s not that hard to code such dynamic
properties yourself.

The astute reader has no doubt noticed that we did not align the text to the center of its bounding rectangle, (0.5,
0.5), but to the bottom center, (0.5, 0). This is purely for æsthetic reasons: the composition tends to look better
when a centered object is a bit above the actual center.

Now that we know something about our objects’ geometry, the last argument to the text should start to make sense:

scale=(0.001, 0.001),
)

If we tried to put a roughly 600×100 text in a 1×1 window, we’d see, in the best case, a small part of a giant white
blob. More probably, we’d see nothing, because we’d hit the space between the letters.

To bring the text back to scale, we shrink it to a thousandth of its original size, making it roughly 0.6×0.1. That will
fit in a 1×1 square easily, leaving nice wide margins around.

And now that our scene is constructed, we can worry about displaying it:

Window(root_layer, width=400, height=400)

This creates a special Pyglet window that redirects its draw events to the root_layer.1

And now the last step:

run()

The run function simply runs a Pyglet main loop, which handles draw events and window close events and various
other kinds of events that we haven’t taken advantage of just yet.

Finally, you get to see our piece of text (and notice that it doesn’t really look all that impressive2). But, at least you
understand it now! Later in the tutorial you’ll learn about animations, input handling, and other objects to draw (such
as sprites). There’s not that much left until your first Gillcup game!

The Clock

Still here? Good.

In this part of the tutorial, we’ll learn about the Gillcup clock, the time source for animations. We’ll go through the
following piece of code, which draws a blinking square:

from gillcup_graphics import Layer, Rectangle, Window, run, RealtimeClock

root_layer = Layer()

rect = Rectangle(root_layer,
size=(0.5, 0.5),
position=(0.5, 0.5),
relative_anchor=(0.5, 0.5),
rotation=45,

)

1 It also redirects other events, such as mouse and resize ones.
2 In a real application, you’ll probably want to load a known font, and adjust all the sizes to be pixel-perfect. This requires some Pyglet-fu.

2.2. The Clock 7

http://gillcup.readthedocs.io/en/latest/code/effect.html#gillcup.Effect

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

Window(root_layer, width=400, height=400)

clock = RealtimeClock()

def blink(hide_flag):
rect.hidden = hide_flag

if not rect.dead:
clock.schedule(lambda: blink(not hide_flag), 0.5)

blink(True)

run()

Let’s fast-forward through the beginning:

from gillcup_graphics import Layer, Rectangle, Window, run, RealtimeClock

root_layer = Layer()

rect = Rectangle(root_layer,
size=(0.5, 0.5),
position=(0.5, 0.5),
relative_anchor=(0.5, 0.5),
rotation=45,

)

Window(root_layer, width=400, height=400)

The only thing that’s different from the previous part of the tutorial is that we’re using a Rectangle, and the options are
a bit different. As you probably can guess, the rotation part rotates the rectangle by 45°.

Next comes the all-important line that creates a clock:

clock = RealtimeClock()

Animations in Gillcup aren’t necessarily tied to the system time. You can use different clocks – for example, to render
a movie with a fixed frame rate, you wouldn’t want to use the system time. Or for a special effect, you might want to
use a Clock that runs at a different speed than your main Clock. But here, we happen to be using the RealtimeClock,
which is tied to the system time, in seconds.

Now, we define a simple function that can show or hide our square:

def blink(hide_flag):

The hidden attribute sets the visibility of our Rectangle – either it’s there, or it isn’t.

The final lines of our blink function look like this:

if not rect.dead:

Let’s start with the schedule call. The schedule() method schedules a function to be called after the given time
elapses. So, here, another instance of blink, with the on argument inverted, will be called 0.5s from the time this
line runs. That blink will schedule another one, and so on, as long as the rect is “alive”.

8 Chapter 2. Tutorial

http://gillcup.readthedocs.io/en/latest/code/clock.html#gillcup.Clock.schedule

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

But no longer. That’s what the if is for. If we wanted to use this in a larger animation, where the blinking rectangle
only appears for a short time, we’d only want to schedule when the rectangle is still on the scene. It’s good practice
to do this even when our animation only includes this one part. Normally, objects are removed from the scene via
the die() method, which sets the dead attribute. So, we can use dead to see if it’s necessary to schedule the next
action.

All that’s left is calling blink for the first time, and running the code:

blink(True)

The run function starts the Pyglet main loop, which, in addition to taking care of drawing our scene, feeds the current
time to our clock.

Animations

Now that we’ve got the Clock basics out of the way, let’s talk about Animations: a way to smoothly change an object’s
attribute over time.

First, let’s take a look at this piece of code (differences from the previous page are highlighted):

from gillcup_graphics import Layer, Rectangle, Window, run, RealtimeClock
from gillcup import Animation

root_layer = Layer()

rect = Rectangle(root_layer,
size=(0.5, 0.5),
position=(0.5, 0.5),
relative_anchor=(0.5, 0.5),
rotation=45,

)

Window(root_layer, width=400, height=400)

clock = RealtimeClock()

def blink(on):
if on:

clock.schedule(Animation(rect, 'opacity', 1, time=0.3))
else:

clock.schedule(Animation(rect, 'opacity', 0, time=0.3))

if not rect.dead:
clock.schedule(lambda: blink(not on), 0.5)

blink(True)

clock.schedule(Animation(rect, 'rotation', 0, time=1, timing='infinite'))

clock.schedule(Animation(rect, 'color', 1, 0.5, 0, time=5))

run()

Aside from a new import, the first difference is in the blink function:

2.3. Animations 9

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

if on:

The opacity attribute affects the visibility of our Rectangle – 0 means completely transparent, 1 is fully opaque,
anything in between that would make the Rectangle see-through. Opacity, and other properties like size, scale,
relative_anchor, rotation or color, are Gillcup animated properties. There are several ways to manipulate
them: they can be set when creating a GraphicsObject, as we’ve seen previously in the tutorial; they become attributes
of the object so you can set them normally, as in rest.opacity = 0.4, and finally, they can be animated, as
we’ll see later.

Here, instead of just changing the value, we schedule an Animation on our clock. The Animation will smoothly
change rect‘s opacity from its current value to 1 in the interval of 0.3 seconds (that is, 0.3 of whatever units of
time clock uses).

The second changed line is similar – it just animates the value back to zero.

The next added line reads:

Similar to the above, this smoothly changes the rotation from the current value (45) to 0 in the course of 1 second.
However, due to the infinite timing, it doesn’t stop there: it continues past 0° and goes on, through -45° in the
second second, -90° in the third, and so on. The final effect is that our square will rotate forever.

The last added line reads:

Here, we re-color our square from white to orange over the course of 5 seconds. We’re animating a tuple property
– the color consists of three values, red, green, and blue. So, we need to pass three values to the Animation.
We could also animate the component properties individually, with the same effect. Most tuple properties are like
this: position‘s components are is x and y, scale‘s components include scale_x and scale_y, and so on.
Whether you animate the entire tuple or the compoents is up to you.

The Animation class has several options and subclasses that let you take control of exactly how the attribute is
changed; the infinite timing is just one of them.

If you wish to control an animated property in ways unrelated to a clock, take a look in the gillcup.effect
module. The Effect class provides the control over an attribute; Animation is an Effect subclass that adds time-related
stuff. And chaining.

Chaining animations

Animations offer a way to schedule an action to do after they are done. In the following code:

from gillcup_graphics import Layer, Rectangle, Window, run, RealtimeClock
from gillcup import Animation

root_layer = Layer()

rect = Rectangle(root_layer,
size=(0.5, 0.5),
position=(0.25, 0.25),
relative_anchor=(0.5, 0.5),

)

10 Chapter 2. Tutorial

http://gillcup.readthedocs.io/en/latest/code/animation.html#gillcup.Animation
http://gillcup.readthedocs.io/en/latest/code/animation.html#gillcup.Animation
http://gillcup.readthedocs.io/en/latest/code/effect.html#module-gillcup.effect

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

Window(root_layer, width=400, height=400)

clock = RealtimeClock()

def announce_end():
print 'done'

animation = Animation(rect, 'x', 0.75, time=1)

clock.schedule(animation)

animation = animation.chain(Animation(rect, 'y', 0.75, time=1))
animation = animation.chain(Animation(rect, 'x', 0.25, time=1))
animation = animation.chain(Animation(rect, 'y', 0.25, time=1))

animation.chain(announce_end)

run()

. . . the chain() method does just that: when an Animation is done, chain‘s argument is scheduled on that Anima-
tion’s clock. The argument can be another Animation, or just a regular callable.

When doing complex stuff, be aware that each Animation can only be scheduled and run once. If you need to do the
same thing several times, you can make an Animation factory (look at blink in the first Animation example).

Building animations

Using the chain method can be clumsy at times. Another way to build complex animations from the basic building
blocks is provided by the + and | operators:

from gillcup_graphics import Layer, Rectangle, Window, run, RealtimeClock
from gillcup import Animation

root_layer = Layer()

rect = Rectangle(root_layer,
size=(0.5, 0.5),
position=(0.25, 0.25),
relative_anchor=(0.5, 0.5),

)

Window(root_layer, width=400, height=400)

clock = RealtimeClock()

def announce_end():
print('done')

animation = (
Animation(rect, 'x', 0.75, time=1) +
0.5 + # a half-second delay
Animation(rect, 'y', 0.75, time=1))

animation += [0.5, Animation(rect, 'x', 0.25, time=1), 0.5]
animation += (

Animation(rect, 'y', 0.25, time=1) |

2.3. Animations 11

http://gillcup.readthedocs.io/en/latest/code/actions.html#gillcup.Action.chain

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

Animation(rect, 'rotation', -90, time=1))
animation += announce_end

clock.schedule(animation)

run()

The operators create a larger animation, which runs its components one after the other (+) or in parallel (|).

To create delays, you can “add” numbers to Animations. You can also use lists (or other iterables) of animations; these
work as if all their components were “added” toghether (except iterators are evaluated lazily). However, be sure that
you don’t accidentally pass a raw number of list to chain or Clock.schedule.

Since each animation can only be scheduled once, be careful to not accidentally schedule any “parts” of a larger
animation individually.

If you wish to look how this is implemented, or how to extend it in different ways, see Gillcup’s actions module.
Actions implement the concept of a chainable event; Animation (an Action subclass) adds the changing of an object’s
attribute.

Processes

Finally, we can schedule actions via a Process generator. This allows you to lay out an animation in a procedural
manner, as if you were writing a script for a movie. Things that don’t happen in a single instant (of Clock time) are
handled by yielding actions. This works best for complex animations that require additional processing or looping,
but don’t “branch out” too much.

from gillcup_graphics import Layer, Rectangle, Window, run, RealtimeClock
from gillcup import Animation
from gillcup.actions import process_generator

root_layer = Layer()

rect = Rectangle(root_layer,
size=(0.5, 0.5),
position=(0.25, 0.25),
relative_anchor=(0.5, 0.5),

)

Window(root_layer, width=400, height=400)

clock = RealtimeClock()

@process_generator
def process():

while not rect.dead:
for prop, value in (

('x', 0.75),
('y', 0.75),
('x', 0.25),
('y', 0.25)):

print('Animating {0} towards {1}'.format(prop, value))
yield Animation(rect, prop, value, time=0.5, easing='sine.in_out')

clock.schedule(process())

12 Chapter 2. Tutorial

http://gillcup.readthedocs.io/en/latest/code/actions.html#module-gillcup.actions
http://gillcup.readthedocs.io/en/latest/code/actions.html#gillcup.actions.Process

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

run()

Any action1 that is yield-ed is scheduled on the clock, and the rest of the process is chained to it. Note that, again,
the “infinite” animation loop is broken when its object dies.

Input

Now, let us handle users’ input. We’ll start with mouse handling.

To handle mouse input, you need to define event handlers in your GraphicsObject. These are methods called
on_pointer_motion, on_pointer_press, and so on. Each one is called with a pointer (cursor) identifier,
coordinates, and possibly other keyword arguments. The pointer identifier is currently always the string 'mouse'.
If you hook your program up to a different input system than a traditional mouse-based computer, such as a multi-touch
screen, you can use different pointer identifiers to differentiate between different pointers1.

The coordinates are more interesting. These come in three arguments, x, y, z2, and represent the position of the
pointer in the object’s own local coordinates.

The keyword arguments vary depending on the event type. For example, press and drag events will be called with a
“button” argument. The methods need to accept any additional arguments that might be passed to them (for example,
if someone connects Gillcup Graphics to a tablet, you might start getting pressure/tilt information in the events).

For motion and press events, the handler can return a true value to “claim” the event. Once claimed, events don’t
propagate to any objects that might be below the claimer. For press events, the claimer will also exclusively get
subsequent drag and release events.

Enough theory! The following example is a bit less minimal than the previous ones, but it should illustrate typical
Gillcup Graphics usage better:

from __future__ import division

import gillcup
import gillcup_graphics

class DemoRect(gillcup_graphics.Rectangle):
"""A rectangle that goes purple on hover and blue on click/hold/drag
"""
def __init__(self, parent, clock, **kwargs):

super(DemoRect, self).__init__(parent, **kwargs)
self.clock = clock
self.pointers_in = set()
self.pointers_pressed = set()

def on_pointer_motion(self, pointer, x, y, z, **kwargs):
if pointer not in self.pointers_in:

self.clock.schedule(gillcup.Animation(self, 'red', 0, time=0.15))
self.pointers_in.add(pointer)
return True

def on_pointer_leave(self, pointer, x, y, z, **kwargs):
self.pointers_in.remove(pointer)

1 You can also yield numbers or lists/iterables, as with the + and | operators.
1 Of course, you’d need to do such hooking up manually, by calling pointer_event() of your root layer.
2 The z coordinate will generally be zero.

2.4. Input 13

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

if not self.pointers_in:
self.clock.schedule(gillcup.Animation(self, 'red', 1, time=0.15))

return True

def on_pointer_press(self, pointer, x, y, z, button, **kwargs):
if not self.pointers_pressed:

self.clock.schedule(gillcup.Animation(self, 'green', 0, time=0.15))
self.pointers_pressed.add((pointer, button))
return True

def on_pointer_release(self, pointer, x, y, z, button, **kwargs):
self.pointers_pressed.remove((pointer, button))
if not self.pointers_pressed:

self.clock.schedule(gillcup.Animation(self, 'green', 1, time=0.15))
return True

class DraggableRect(gillcup_graphics.Rectangle):
"""A rectangle that can be dragged around, but is "transparent" to hover

N.B.: This simple mechanism will not work with objects that are scaled or
rotated.
"""
def __init__(self, parent, **kwargs):

super(DraggableRect, self).__init__(parent, **kwargs)
self.drag_starts = {}

def on_pointer_press(self, pointer, x, y, z, button, **kwargs):
self.drag_starts[pointer, button] = x, y
return True

def on_pointer_drag(self, pointer, x, y, z, button, **kwargs):
start_x, start_y = self.drag_starts[pointer, button]
self.x += x - start_x
self.y += y - start_y
return True

def on_pointer_release(self, pointer, x, y, z, button, **kwargs):
del self.drag_starts[pointer, button]
return True

class DemoLayer(gillcup_graphics.Layer):
def __init__(self, clock, *args, **kwargs):

super(DemoLayer, self).__init__(*args, **kwargs)
n = 10
for x in range(n):

for y in range(n):
rct = DemoRect(self, clock, scale=(1 / n, 1 / n),

position=(x / n, y / n))
if (x, y) == (5, 5):

rct.rotation = 30
rct.blue = 0.7

DraggableRect(self, size=(0.05, 0.05), color=(0, 1, 0),
position=(1 / 3, 1 / 3))

if __name__ == '__main__':

14 Chapter 2. Tutorial

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

clock = gillcup_graphics.RealtimeClock()
layer = DemoLayer(clock)
window = gillcup_graphics.Window(layer, width=500, height=500)
gillcup_graphics.run()

Let’s take it one class at a time, this time.

The DemoRect class defines a rectangle that changes color depending on mouse input. In the
on_pointer_motion and on_pointer_leave, we keep track of which pointers are “hovering” over. If there
are any, it changes color to cyan (or more precisely, becomes “less red”). When the last pointer leaves, it switches
back to white (or, “full red”). The on_pointer_press and on_pointer_leave do a similar thing with button-
press-based events, except for each pointer they also remember which buttons are pressed. From the time a button is
pressed over the rectangle, to the time the last such button is released, the square is “less green”. This nicely illustrates
the dragging concept: even if you drag your mouse out of a rectangle, it still counts as dragging that rectangle, and the
“release” events will fire even if the mouse is outside at that time.

The DraggableRect uses press, drag, and release events to implement an object that can be dragged around:
it remembers where, relative to itself, the drag started, and when dragged, moves so that the pointer is at the same place
(again, relative to the DraggableRect).

Finally, the DemoLayer is just a container for a hundred instances of DemoRect and a DraggableRect. One
DemoRect is rotated and discolored to show what happens with transformations and overlapping.

2.4. Input 15

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

16 Chapter 2. Tutorial

CHAPTER 3

Module Reference

Shiny graphical flashiness for Gillcup

Gillcup Graphics provides a number of modules:

gillcup_graphics.objects

Drawable objects

This module provides basic objects you can draw and animate.

Perhaps the most important of these is the Layer, which does not have a graphical representation by itself, but can
contain other objects, such as a Rectangle, Sprite or another Layer. Graphics objects are thus arranged in a
scene tree. The tree is rooted at a parent-less Layer1, which will usually be shown in a Window .

Each object has a lot of AnimatedProperties that control its position on the screen (relative to its parent), and properties
like color and opacity.

The objects are compatible with 3D transformations, but anything outside the z=0 plane needs custom OpenGL camera
setup. Refer to Pyglet documentation for details.

class gillcup_graphics.GraphicsObject(parent=None, to_back=False, name=None, **kwargs)
Base class for gillcup_graphics scene objects

Parameters

• parent – The parent Layer in the scene tree

• to_back – If false (default), the object is inserted at the end of the parent’s children list,
and thus is drawn after (in front of) its existing siblings. If true, it will be is drawn before
(behind) them.

• name – An optional name of the object. It is stored in the name attribute.

• kwargs – Any animated property (including those from subclasses) can be initialized by
passing a value as a keyword argument to __init__.

1 To be precise, the root may be any object. It’s just that non-Layers aren’t terribly useful here.

17

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

draw(**kwargs)
Draw this object. Overridden in subclasses.

Parameters

• transformation – A GlTransformation object controlling the current OpenGL
matrix.

• window – A Window for which the drawing is done.

Additional keyword arguments might be present. Unknown ones should be passed to child objects un-
changed.

reparent(new_parent, to_back=False)
Set a new parent

Remove this object from the current parent (if there is one) and attech to a new one (if new_parent is not
None. The to_back argument is the same as for __init__().

Beware that reparenting may throw off the pointer tracking mechanism. Specifically, ‘leave’ and ‘release’
events might not fire properly.

Animated Properties:

position
The object’s position in space

This is an offset between the parent’s anchor and this object’s own anchor, in the parent’s coor-
dinates.

The individual components are in the x, y, z attributes.

anchor
A point that represents this object for positioning.

The individual components are in the anchor_x, anchor_y, anchor_z attributes.

relative_anchor
Anchor of the object relative to the object’s size

When relative_anchor is (1, 1), the anchor is in the object’s upper right corner. When
relative_anchor is (0.5, 0.5), anchor will me in the middle.

This property is only effective if anchor is not set by other means.

The individual components are in the relative_anchor_x, relative_anchor_y,
relative_anchor_z attributes.

scale
The object’s scale.

The individual components are in the scale_x, scale_y, scale_z attributes.

size
The object’s natural size

The individual components are in the width and height attributes.

rotation
Rotation about the object’s anchor

Event handlers:

pointer_event(event_type, pointer, x, y, z, **kwargs)
Handle a pointer (mouse) event

18 Chapter 3. Module Reference

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

Dispatches to on_pointer_<event> methods. See Layer for the available handlers.

on_pointer_motion(pointer, x, y, z, **kwargs)
Handle pointer (mouse) movement

Called when a pointer moves to point (x, y, z) of the object. The coordinates are in the object’s
own coordinate space.

Return a true value to stop the event from propagating to objects further down.

Remember to override the hit_test method so the object’s shape is known to the pointer handling
machinery.

on_pointer_leave(pointer, x, y, z, **kwargs)
Handle pointer (mouse) leaving the object

Called when a pointer moves to point (x, y, z), which is outside the object. The coordinates are
in the object’s own coordinate space.

If the pointer left without known coordinates (this can happen, for example, when the object’s
transformation matrix becomes singular), all of x, y, z will be set to False (which is equal to 0).

All objects that recieved a ‘motion’ event for a pointer will recieve a ‘leave’ event for that pointer,
unless they (or their parent chains) are destroyed first.

on_pointer_press(pointer, x, y, z, button, **kwargs)
Handle a pointer (mouse) button press on this object

Called when a pointer button is pressed on point (x, y, z) of the object. The coordinates are in
the object’s own coordinate space.

Return a true value to “claim” the resulting drag operation. The claiming object will receive
‘drag’ and ‘release’ pointer events. Returning true also stops the event’s propagation to objects
further below.

Subsequent drag and release events follow the pointer even outside the object, including outside
the window itself.

on_pointer_drag(pointer, x, y, z, button, **kwargs)
Handle a pointer (mouse) drag on this object

Called when a pointer is dragged (with a button pressed) on point (x, y, z) of the object. The
coordinates are in the object’s own coordinate space, and may be outside the object (or even the
window).

Drag events are only triggered for objects that “claimed” a press event.

on_pointer_release(pointer, x, y, z, button, **kwargs)
Handle a pointer (mouse) button release on this object

Called when a pointer button is released on point (x, y, z) of the object. The coordinates are in
the object’s own coordinate space, and may be outside the object (or even the window).

Release events are only triggered for objects that “claimed” a press event. The object that
claimed a ‘press’ event for a pointer will recieve a ‘release’ event for that pointer/button combi-
nation, unless it (or its parent chain) is destroyed first.

Other subclassable methods:

is_hidden()
Return true if this object (and any children) aren’t active

Hidden objects are not shown and do not handle events.

3.1. gillcup_graphics.objects 19

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

If the hidden attribute of self is true, this method will return true. Otherwise, it checks self.
dead and other properties that can hide the object, such as zero scale.

hit_test(_x, _y, _z)
Perform a hit test on this object

Return false if the given point (in local coordinates) is “outside” the object.

transform(transformation)
Set up the transformation matrix for object

Parameters transformation – The BaseTransformation object to modify
in-place.

No push() or pop() calls should be made, only transformations.

die()
Destroy this object

Sets up to detach from the parent on the next frame, and calls die() on all children.

Internal methods:

set_animated_properties(kwargs)
Initializes animated properties with keyword arguments

Raises an error if any extra arguments are found.

die()
Destroy this object

Sets up to detach from the parent on the next frame, and calls die() on all children.

class gillcup_graphics.Layer(parent=None, **kwargs)
A container for GraphicsObjects

The Layer is unique in that it can contain child objects.

Init arguments are the same as for GraphicsObject.

draw(transformation, **kwargs)
Draw all of the layer’s children

class gillcup_graphics.DecorationLayer(parent=None, **kwargs)
A Layer that does not respond to hit tests

Objects in this layer will not be interactive.

class gillcup_graphics.Rectangle(parent=None, to_back=False, name=None, **kwargs)
A box of color

hit_test(x, y, _z)
Perform a hit test on the rectangle

Animated Properties:

color
Color or tint of the object

The individual components are in the red, green, blue attributes.

opacity
Opacity of the object

class gillcup_graphics.Sprite(parent, texture, **kwargs)
An image

20 Chapter 3. Module Reference

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

Parameters texture – A Pyglet image to show in this sprite. You can use the pyglet.image.
load() to obtain one.

Other init arguments are the same as for GraphicsObject.

hit_test(x, y, _z)
Perform a hit test on this object. Uses the sprite size.

Does not take e.g. alpha into account

Animated Properties:

color
Color or tint of the object

The individual components are in the red, green, blue attributes.

opacity
Opacity of the object

class gillcup_graphics.Text(parent, text, font_name=None, **kwargs)
A text label

Parameters

• text – A string to display n this label

• font_name – Name of the font to use. See Pyglet documentation for more info on using
fonts.

Other init arguments are the same as for GraphicsObject.

Note: The API regarding font size is experimental.

hit_test(x, y, _z)
Perform a hit test on this object. Uses the bounding rectangle.

size
The natural size of the text

This property is not animated, and cannot be changed.

Returns the size of the entire text, i.e. doesn’t take characters_displayed into account.

The width and height attributes contain the size’s individual components.

Animated Properties:

color
Color or tint of the object

The individual components are in the red, green, blue attributes.

opacity
Opacity of the object

font_size
The size of the font

characters_displayed
The maximum number of characters displayed

3.1. gillcup_graphics.objects 21

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

gillcup_graphics.mainwindow

Utilities for interfacing gillcup_graphics with the rest of the world

class gillcup_graphics.Window(layer, *args, **kwargs)
A main window

A convenience subclass of pyglet.window.Window that shows a Layer

Parameters layer – The layer to show. Its scalewill be automatically adjusted to fit the window
(and re-adjusted when the window’s size changes).

Other arguments are passed to Pyglet’s window constructor. The most common arguments to pass are:

Parameters

• width – Width of the window

• height – Height of the window

• caption – Caption that appears in the title, taskbar, etc.

• fullscreen – If true, the window will cover the screen

• resizable – If true, the user can resize the window

Other arguments are explained in the Pyglet documentation.

manual_draw()
Draw the contents outside of the main loop

class gillcup_graphics.RealtimeClock
A gillcup.Clock tied to the system time

Note that the Pyglet main loop must be running (or the Pyglet clock must be ticked otherwise) for this to work.

gillcup_graphics.run()
Runs the Pyglet main loop. Alias for pyglet.app.run().

gillcup_graphics.transformation

Transformation objects

The Transformation interface is implemented by several classes that have used whenever info about graphics objects’
position, scale, rotation, etc. are needed.

A graphic object’s transform method takes a Transformation object and calls its translate, scale, rotate
or premultiply methods. While premultiply is the most general, the other methods are more straightforward
to use and often much faster.

For drawing, a GlTransformation object, which will update the OpenGL state directly, is passed to the method. For hit
tests and mouse events, a PointTransformation is used.

Each transformation object implements a stack modeled on the OpenGL matrix stack: any state can be saved with
push, and the last-pushed state restored with pop. The state context manager simplifies working with the stack.

class gillcup_graphics.transformation.BaseTransformation
Base for all transformations: contains common functionality

Transformations are based on a 3D affine transformation matrix (a 4x4 matrix where the last column is [0 0 0
1])

22 Chapter 3. Module Reference

http://www.pyglet.org/doc/api/pyglet.window.Window-class.html#__init__
http://gillcup.readthedocs.io/en/latest/code/clock.html#gillcup.Clock

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

state
Context manager wrapping push() and pop()

push()
Push the matrix state: the corresponding pop() will return here

You probably want to use state instead.

pop()
Restore matrix saved by the corresponding push() call

reset()
Reset the matrix to identity

translate(x=0, y=0, z=0)
Change the transformatin to represent moving an object

The object is moved, without rotating, along the vector [x y z].

rotate(angle, x=0, y=0, z=1)
Change the transformatin to represent rotating an object

The object is rotated angle degrees along the axis specified by the vector [x y z]. This must be an unit
vector (i.e. x2 + y2 + z2 = 1)

scale(x=1, y=1, z=1)
Change the transformatin to represent scaling an object

The object is rotated angle degrees along the axis specified by the vector [x y z]. This must be an unit
vector (i.e. x2 + y2 + z2 = 1)

premultiply(values)
Premultiply the given matrix to self, in situ

Parameters values – An iterable of 16 matrix elements in row-major (C) order

class gillcup_graphics.transformation.GlTransformation
OpenGL implementation: affects the OpenGL state directly

class gillcup_graphics.transformation.PointTransformation(x, y, z)
Transformation for a single point

The point attribute corresponds to the vector given to the constructor transformed by whatever transformation
was applied to this object.

class gillcup_graphics.transformation.MatrixTransformation
A Transformation with a full, queryable result matrix.

__len__()
Return 16, the size of the matrix.

__getitem__(item)
Get a number from the matrix. Supports (x, y) pairs, or single ints.

Note that __len__ and __getitem__ are one variant of the iteration protocol: MatrixTransformation sup-
ports iter() as well.

transform_point(x=0, y=0, z=0)
Return the given vector multiplied by this matrix

Returns a 3-element iterable

3.3. gillcup_graphics.transformation 23

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

gillcup_graphics.effectlayer

A Layer that provides some bling

With EffectLayer, it is possible to colorize, fade, or pixelate groups of graphics objects.

This wors by rendering the layer’s contents to a texture, and then drawing the texture with effects applied. Currently,
it needs the Framebuffer Object (FBO) OpenGL extension to work.

Note: This code is experimental. Expect it to not work.

class gillcup_graphics.EffectLayer(parent=None, **kwargs)
A Layer that can colorize, fade, or pixelate its contents as a whole

Animated Properties:

color
Color or tint of the object

The individual components are in the red, green, blue attributes.

opacity
Opacity of the object

mosaic
Pixelation of this layer

For example, if mosaic=(2, 4), the layer will be drawn using 2×4 blocks

need_offscreen()
Return true if off-screen rendering is needed

Off-screen rendering is only done if needed, i.e. if color, opacity or mosaic don’t have their default
values.

Subclasses should extend this method if they need off-screen rendering in more circumstances.

class gillcup_graphics.effectlayer.RecordingLayer(parent=None, **kwargs)
A layer that records its contents as an image

After this layer is drawn, the picture is available in the last_image attribute as a pyglet ImageData object.

get_image(width, height)
Draw this layer in a new invisible window and return the ImageData

The most interesting classes of each module are exported directly from the gillcup_graphics package:

• GraphicsObject (from gillcup_graphics.objects)

• Layer (from gillcup_graphics.objects)

• DecorationLayer (from gillcup_graphics.objects)

• Rectangle (from gillcup_graphics.objects)

• Sprite (from gillcup_graphics.objects)

• Text (from gillcup_graphics.objects)

• Window (from gillcup_graphics.mainwindow)

• RealtimeClock (from gillcup_graphics.mainwindow)

• run() (from gillcup_graphics.mainwindow)

24 Chapter 3. Module Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

25

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

26 Chapter 4. Indices and tables

Python Module Index

g
gillcup_graphics, 17
gillcup_graphics.effectlayer, 24
gillcup_graphics.mainwindow, 22
gillcup_graphics.objects, 17
gillcup_graphics.transformation, 22

27

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

28 Python Module Index

Index

Symbols
__getitem__() (gillcup_graphics.transformation.MatrixTransformation

method), 23
__len__() (gillcup_graphics.transformation.MatrixTransformation

method), 23

A
anchor (gillcup_graphics.GraphicsObject attribute), 18

B
BaseTransformation (class in gill-

cup_graphics.transformation), 22

C
characters_displayed (gillcup_graphics.Text attribute), 21
color (gillcup_graphics.EffectLayer attribute), 24
color (gillcup_graphics.Rectangle attribute), 20
color (gillcup_graphics.Sprite attribute), 21
color (gillcup_graphics.Text attribute), 21

D
DecorationLayer (class in gillcup_graphics), 20
die() (gillcup_graphics.GraphicsObject method), 20
draw() (gillcup_graphics.GraphicsObject method), 18
draw() (gillcup_graphics.Layer method), 20

E
EffectLayer (class in gillcup_graphics), 24

F
font_size (gillcup_graphics.Text attribute), 21

G
get_image() (gillcup_graphics.effectlayer.RecordingLayer

method), 24
gillcup_graphics (module), 17
gillcup_graphics.effectlayer (module), 24
gillcup_graphics.mainwindow (module), 22

gillcup_graphics.objects (module), 17
gillcup_graphics.run() (in module gill-

cup_graphics.mainwindow), 22
gillcup_graphics.transformation (module), 22
GlTransformation (class in gill-

cup_graphics.transformation), 23
GraphicsObject (class in gillcup_graphics), 17

H
hit_test() (gillcup_graphics.GraphicsObject method), 20
hit_test() (gillcup_graphics.Rectangle method), 20
hit_test() (gillcup_graphics.Sprite method), 21
hit_test() (gillcup_graphics.Text method), 21

I
is_hidden() (gillcup_graphics.GraphicsObject method),

19

L
Layer (class in gillcup_graphics), 20

M
manual_draw() (gillcup_graphics.Window method), 22
MatrixTransformation (class in gill-

cup_graphics.transformation), 23
mosaic (gillcup_graphics.EffectLayer attribute), 24

N
need_offscreen() (gillcup_graphics.EffectLayer method),

24

O
on_pointer_drag() (gillcup_graphics.GraphicsObject

method), 19
on_pointer_leave() (gillcup_graphics.GraphicsObject

method), 19
on_pointer_motion() (gillcup_graphics.GraphicsObject

method), 19

29

Gillcup Graphics Documentation, Release 0.2.0-alpha.1

on_pointer_press() (gillcup_graphics.GraphicsObject
method), 19

on_pointer_release() (gillcup_graphics.GraphicsObject
method), 19

opacity (gillcup_graphics.EffectLayer attribute), 24
opacity (gillcup_graphics.Rectangle attribute), 20
opacity (gillcup_graphics.Sprite attribute), 21
opacity (gillcup_graphics.Text attribute), 21

P
pointer_event() (gillcup_graphics.GraphicsObject

method), 18
PointTransformation (class in gill-

cup_graphics.transformation), 23
pop() (gillcup_graphics.transformation.BaseTransformation

method), 23
position (gillcup_graphics.GraphicsObject attribute), 18
premultiply() (gillcup_graphics.transformation.BaseTransformation

method), 23
push() (gillcup_graphics.transformation.BaseTransformation

method), 23

R
RealtimeClock (class in gillcup_graphics), 22
RecordingLayer (class in gillcup_graphics.effectlayer),

24
Rectangle (class in gillcup_graphics), 20
relative_anchor (gillcup_graphics.GraphicsObject at-

tribute), 18
reparent() (gillcup_graphics.GraphicsObject method), 18
reset() (gillcup_graphics.transformation.BaseTransformation

method), 23
rotate() (gillcup_graphics.transformation.BaseTransformation

method), 23
rotation (gillcup_graphics.GraphicsObject attribute), 18

S
scale (gillcup_graphics.GraphicsObject attribute), 18
scale() (gillcup_graphics.transformation.BaseTransformation

method), 23
set_animated_properties() (gill-

cup_graphics.GraphicsObject method), 20
size (gillcup_graphics.GraphicsObject attribute), 18
size (gillcup_graphics.Text attribute), 21
Sprite (class in gillcup_graphics), 20
state (gillcup_graphics.transformation.BaseTransformation

attribute), 22

T
Text (class in gillcup_graphics), 21
transform() (gillcup_graphics.GraphicsObject method),

20

transform_point() (gill-
cup_graphics.transformation.MatrixTransformation
method), 23

translate() (gillcup_graphics.transformation.BaseTransformation
method), 23

W
Window (class in gillcup_graphics), 22

30 Index

	Installation and Dependencies
	Tutorial
	Hello, World!
	The Clock
	Animations
	Input

	Module Reference
	gillcup_graphics.objects
	gillcup_graphics.mainwindow
	gillcup_graphics.transformation
	gillcup_graphics.effectlayer

	Indices and tables
	Python Module Index

